An Educational Update: Technology Assisted Review Course from Ralph Losey (e-Discovery Team)

Extract from New TAR Training by eDiscovery Expert Ralph Losey. Content shared by permission of course author.

This is the e-Discovery Team’s training course on how to do TAR (Technology Assisted Review). What TAR really means is electronic document review enhanced by active machine learning, a type of specialized Artificial Intelligence. Our method of AI-enhanced document review is called Hybrid Multimodal IST Predictive Coding 4.0. The Course is composed of Sixteen Classes:

  1. First Class: Introduction
  2. Second Class: TREC Total Recall Track
  3. Third Class: Introduction to the Nine Insights Concerning the Use of Predictive Coding in Legal Document Review
  4. Fourth Class: 1st of the Nine Insights – Active Machine Learning
  5. Fifth Class: Balanced Hybrid and Intelligently Spaced Training
  6. Sixth Class: Concept and Similarity Searches
  7. Seventh Class: Keyword and Linear Review
  8. Eighth Class: GIGO, QC, SME, Method, Software
  9. Ninth Class: Introduction to the Eight-Step Work Flow
  10. Tenth Class: Step One – ESI Communications
  11. Eleventh Class: Step Two – Multimodal ECA
  12. Twelfth Class: Step Three – Random Prevalence
  13. Thirteenth Class: Steps Four, Five and Six – Iterate
  14. Fourteenth Class: Step Seven – ZEN Quality Assurance Tests
  15. Fifteenth Class: Step Eight – Phased Production
  16. Sixteenth Class: Conclusion

With a lot of hard work you can complete this online training program in a long weekend. After that, this course can serve as a solid reference to consult during your complex document review projects.

First Class: Introduction

The sixteen classes in this course cover seventeen topics:

  1. Active Machine Learning (aka Predictive Coding)
  2. Concept & Similarity Searches (aka Passive Learning)
  3. Keyword Search (tested, Boolean, parametric)
  4. Focused Linear Search (key dates & people)
  5. GIGO & QC (Garbage In, Garbage Out) (Quality Control)
  6. Balanced Hybrid (man-machine balance with IST)
  7. SME (Subject Matter Expert, typically trial counsel)
  8. Method (for electronic document review)
  9. Software (for electronic document review)
  10. Talk (step 1 – relevance dialogues)
  11. ECA (step 2 – early case assessment using all methods)
  12. Random (step 3 – prevalence range estimate, not control sets)
  13. Select (step 4 – choose documents for training machine)
  14. AI Rank (step 5 – machine ranks documents according to probabilities)
  15. Review (step 6 – attorneys review and code documents)
  16. Zen QC (step 7 – Zero Error Numerics Quality Control procedures)
  17. Produce (step 8 – production of relevant, non-privileged documents)

We offer this information for free on this blog to encourage as many people as possible in this industry to get on the AI bandwagon. Predictive coding is based on active machine learning, which is a classic, powerful type of Artificial Intelligence (AI). Our Predictive Coding 4.0 method is designed to harness this power to help attorneys find key evidence in ESI quickly and effectively.